from tsai.data.external import *
from tsai.data.core import *
from tsai.models.InceptionTime import *
from tsai.models.layers import *
from tsai.learner import *
from fastai.metrics import *
from tsai.metrics import *
Experimental Callbacks
Miscellaneous experimental callbacks for timeseriesAI.
Gambler’s loss: noisy labels
gambler_loss
gambler_loss (reward=2)
GamblersCallback
GamblersCallback (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
A callback to use metrics with gambler’s loss
= get_UCR_data('NATOPS', return_split=False)
X, y, splits = [None, TSCategorize()]
tfms = TSDatasets(X, y, tfms=tfms, splits=splits)
dsets = TSDataLoaders.from_dsets(dsets.train, dsets.valid, bs=[64, 128])
dls = gambler_loss()
loss_func = ts_learner(dls, InceptionTime(dls.vars, dls.c + 1), loss_func=loss_func, cbs=GamblersCallback, metrics=[accuracy])
learn 1) learn.fit_one_cycle(
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.840055 | 1.945397 | 0.166667 | 00:05 |
Uncertainty-based data augmentation
UBDAug
UBDAug (batch_tfms:list, N:int=2, C:int=4, S:int=1)
A callback to implement the uncertainty-based data augmentation.
from tsai.models.utils import *
= get_UCR_data('NATOPS', return_split=False)
X, y, splits = [None, TSCategorize()]
tfms = TSDatasets(X, y, tfms=tfms, splits=splits)
dsets = TSDataLoaders.from_dsets(dsets.train, dsets.valid, batch_tfms=[TSStandardize()])
dls = build_ts_model(InceptionTime, dls=dls)
model = [TSMagScale(.75, p=.5), TSMagWarp(.1, p=0.5), TSWindowWarp(.25, p=.5),
TS_tfms =0.5), TSRandomResizedCrop(.1, p=.5),
TSSmooth(p.3, p=0.5),
TSRandomCropPad(.5, p=.5)]
TSMagAddNoise(
= UBDAug(TS_tfms, N=2, C=4, S=2)
ubda_cb = ts_learner(dls, model, cbs=ubda_cb, metrics=accuracy)
learn 1) learn.fit_one_cycle(
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.817080 | 1.791119 | 0.077778 | 00:14 |
BatchLossFilter
BatchLossFilter
BatchLossFilter (loss_perc=1.0, schedule_func:Optional[<built- infunctioncallable>]=None)
Callback that selects the hardest samples in every batch representing a percentage of the total loss
RandomWeightLossWrapper
RandomWeightLossWrapper
RandomWeightLossWrapper (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
Basic class handling tweaks of the training loop by changing a Learner
in various events
BatchMasker
BatchMasker
BatchMasker (r:float=0.15, lm:int=3, stateful:bool=True, sync:bool=False, subsequence_mask:bool=True, variable_mask:bool=False, future_mask:bool=False, schedule_func:Optional[<built- infunctioncallable>]=None)
*Callback that applies a random mask to each sample in a training batch
Args:
r: probability of masking. subsequence_mask: apply a mask to random subsequences. lm: average mask len when using stateful (geometric) masking. stateful: geometric distribution is applied so that average mask length is lm. sync: all variables have the same masking. variable_mask: apply a mask to random variables. Only applicable to multivariate time series. future_mask: used to train a forecasting model. schedule_func: if a scheduler is passed, it will modify the probability of masking during training.*
SamplerWithReplacement
SamplerWithReplacement
SamplerWithReplacement (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
Callback that modify the sampler to select a percentage of samples and/ or sequence steps with replacement from each training batch