GatedTabTransformer

This implementation is based on:

Official repo: https://github.com/radi-cho/GatedTabTransformer


source

GatedTabTransformer

 GatedTabTransformer (classes, cont_names, c_out, column_embed=True,
                      add_shared_embed=False, shared_embed_div=8,
                      embed_dropout=0.1, drop_whole_embed=False,
                      d_model=32, n_layers=6, n_heads=8, d_k=None,
                      d_v=None, d_ff=None, res_attention=True,
                      attention_act='gelu', res_dropout=0.1,
                      norm_cont=True, mlp_d_model=32, mlp_d_ffn=64,
                      mlp_layers=4)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

.. note:: As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

from fastcore.test import test_eq
from fastcore.basics import first
from fastai.data.external import untar_data, URLs
from fastai.tabular.data import TabularDataLoaders
from fastai.tabular.core import Categorify, FillMissing
from fastai.data.transforms import Normalize
import pandas as pd
path = untar_data(URLs.ADULT_SAMPLE)
df = pd.read_csv(path/'adult.csv')
dls = TabularDataLoaders.from_csv(path/'adult.csv', path=path, y_names="salary",
    cat_names = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race'],
    cont_names = ['age', 'fnlwgt', 'education-num'],
    procs = [Categorify, FillMissing, Normalize])
x_cat, x_cont, yb = first(dls.train)
model = GatedTabTransformer(dls.classes, dls.cont_names, dls.c)
test_eq(model(x_cat, x_cont).shape, (dls.train.bs, dls.c))