A Very Fast (Almost) Deterministic Transform for Time Series Classification.
source
MiniRocketClassifier
MiniRocketClassifier (num_features=10000, max_dilations_per_kernel=32,
random_state=None, alphas=array([1.e-03, 1.e-02,
1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03]),
normalize_features=True, memory=None,
verbose=False, scoring=None, class_weight=None,
**kwargs)
Time series classification using MINIROCKET features and a linear classifier
source
load_minirocket
load_minirocket (fname, path='./models')
source
MiniRocketRegressor
MiniRocketRegressor (num_features=10000, max_dilations_per_kernel=32,
random_state=None, alphas=array([1.e-03, 1.e-02,
1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03]),
normalize_features=True, memory=None, verbose=False,
scoring=None, **kwargs)
Time series regression using MINIROCKET features and a linear regressor
source
load_minirocket
load_minirocket (fname, path='./models')
source
MiniRocketVotingClassifier
MiniRocketVotingClassifier (n_estimators=5, weights=None, n_jobs=-1,
num_features=10000,
max_dilations_per_kernel=32,
random_state=None, alphas=array([1.e-03,
1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02,
1.e+03]), normalize_features=True,
memory=None, verbose=False, scoring=None,
class_weight=None, **kwargs)
Time series classification ensemble using MINIROCKET features, a linear classifier and majority voting
source
get_minirocket_preds
get_minirocket_preds (X, fname, path='./models', model=None)
source
MiniRocketVotingRegressor
MiniRocketVotingRegressor (n_estimators=5, weights=None, n_jobs=-1,
num_features=10000,
max_dilations_per_kernel=32,
random_state=None, alphas=array([1.e-03,
1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02,
1.e+03]), normalize_features=True,
memory=None, verbose=False, scoring=None,
**kwargs)
Time series regression ensemble using MINIROCKET features, a linear regressor and a voting regressor
# Univariate classification with sklearn-type API
dsid = 'OliveOil'
fname = 'MiniRocketClassifier'
X_train, y_train, X_test, y_test = get_UCR_data(dsid)
cls = MiniRocketClassifier()
cls.fit(X_train, y_train)
cls.save(fname)
pred = cls.score(X_test, y_test)
del cls
cls = load_minirocket(fname)
test_eq(cls.score(X_test, y_test), pred)
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
# Multivariate classification with sklearn-type API
dsid = 'NATOPS'
X_train, y_train, X_test, y_test = get_UCR_data(dsid)
cls = MiniRocketClassifier()
cls.fit(X_train, y_train)
cls.score(X_test, y_test)
# Multivariate classification with sklearn-type API
dsid = 'NATOPS'
X_train, y_train, X_test, y_test = get_UCR_data(dsid)
cls = MiniRocketVotingClassifier(5 )
cls.fit(X_train, y_train)
cls.score(X_test, y_test)
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
from sklearn.metrics import mean_squared_error
# Univariate regression with sklearn-type API
dsid = 'Covid3Month'
fname = 'MiniRocketRegressor'
X_train, y_train, X_test, y_test = get_Monash_regression_data(dsid)
if X_train is not None :
rmse_scorer = make_scorer(mean_squared_error, greater_is_better= False )
reg = MiniRocketRegressor(scoring= rmse_scorer)
reg.fit(X_train, y_train)
reg.save(fname)
del reg
reg = load_minirocket(fname)
y_pred = reg.predict(X_test)
print (mean_squared_error(y_test, y_pred, squared= False ))
# Multivariate regression with sklearn-type API
dsid = 'AppliancesEnergy'
X_train, y_train, X_test, y_test = get_Monash_regression_data(dsid)
if X_train is not None :
rmse_scorer = make_scorer(mean_squared_error, greater_is_better= False )
reg = MiniRocketRegressor(scoring= rmse_scorer)
reg.fit(X_train, y_train)
reg.save(fname)
del reg
reg = load_minirocket(fname)
y_pred = reg.predict(X_test)
print (mean_squared_error(y_test, y_pred, squared= False ))
# Multivariate regression ensemble with sklearn-type API
if X_train is not None :
reg = MiniRocketVotingRegressor(5 , scoring= rmse_scorer)
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
print (mean_squared_error(y_test, y_pred, squared= False ))
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.