n_classes = 4
inp = torch.normal(0, 1, (16, 20, n_classes))
targ = torch.randint(0, n_classes, (16, 20)).to(torch.int8)
_mAP(inp, targ)0.27493315845795063
Metrics not included in fastai.
MatthewsCorrCoefBinary (sample_weight=None)
Matthews correlation coefficient for single-label classification problems
get_task_metrics (dls, binary_metrics=None, multi_class_metrics=None, regression_metrics=None, verbose=True)
All metrics applicable to multi classification have been created by Doug Williams (https://github.com/williamsdoug). Thanks a lot Doug!!
F1_multi (*args, **kwargs)
Fbeta_multi (inp, targ, beta=1.0, thresh=0.5, sigmoid=True)
Computes Fbeta when inp and targ are the same size.
balanced_accuracy_multi (inp, targ, thresh=0.5, sigmoid=True)
Computes balanced accuracy when inp and targ are the same size.
specificity_multi (inp, targ, thresh=0.5, sigmoid=True)
Computes specificity (true negative rate) when inp and targ are the same size.
recall_multi (inp, targ, thresh=0.5, sigmoid=True)
Computes recall when inp and targ are the same size.
precision_multi (inp, targ, thresh=0.5, sigmoid=True)
Computes precision when inp and targ are the same size.
metrics_multi_common (inp, targ, thresh=0.5, sigmoid=True, by_sample=False)
Computes TP, TN, FP, FN when inp and targ are the same size.
accuracy_multi (inp, targ, thresh=0.5, sigmoid=True, by_sample=False)
Computes accuracy when inp and targ are the same size.
mae (inp, targ)
Mean absolute error between inp and targ.
mape (inp, targ)
Mean absolute percentage error between inp and targ.