OmniScaleCNN(
(net): Sequential(
(0): build_layer_with_layer_parameter(
(conv_list): ModuleList(
(0): SampaddingConv1D_BN(
(padding): ConstantPad1d(padding=(0, 0), value=0)
(conv1d): Conv1d(3, 56, kernel_size=(1,), stride=(1,))
(bn): BatchNorm1d(56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): SampaddingConv1D_BN(
(padding): ConstantPad1d(padding=(0, 1), value=0)
(conv1d): Conv1d(3, 56, kernel_size=(2,), stride=(1,))
(bn): BatchNorm1d(56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(2): SampaddingConv1D_BN(
(padding): ConstantPad1d(padding=(1, 1), value=0)
(conv1d): Conv1d(3, 56, kernel_size=(3,), stride=(1,))
(bn): BatchNorm1d(56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(1): build_layer_with_layer_parameter(
(conv_list): ModuleList(
(0): SampaddingConv1D_BN(
(padding): ConstantPad1d(padding=(0, 0), value=0)
(conv1d): Conv1d(168, 227, kernel_size=(1,), stride=(1,))
(bn): BatchNorm1d(227, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): SampaddingConv1D_BN(
(padding): ConstantPad1d(padding=(0, 1), value=0)
(conv1d): Conv1d(168, 227, kernel_size=(2,), stride=(1,))
(bn): BatchNorm1d(227, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(2): SampaddingConv1D_BN(
(padding): ConstantPad1d(padding=(1, 1), value=0)
(conv1d): Conv1d(168, 227, kernel_size=(3,), stride=(1,))
(bn): BatchNorm1d(227, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(2): build_layer_with_layer_parameter(
(conv_list): ModuleList(
(0): SampaddingConv1D_BN(
(padding): ConstantPad1d(padding=(0, 0), value=0)
(conv1d): Conv1d(681, 510, kernel_size=(1,), stride=(1,))
(bn): BatchNorm1d(510, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): SampaddingConv1D_BN(
(padding): ConstantPad1d(padding=(0, 1), value=0)
(conv1d): Conv1d(681, 510, kernel_size=(2,), stride=(1,))
(bn): BatchNorm1d(510, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
(gap): GAP1d(
(gap): AdaptiveAvgPool1d(output_size=1)
(flatten): Flatten(full=False)
)
(hidden): Linear(in_features=1020, out_features=2, bias=True)
)