from tsai.imports import default_device
MultiRocketPlus
MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification.
This is a Pytorch implementation of MultiRocket developed by Malcolm McLean and Ignacio Oguiza based on:
Tan, C. W., Dempster, A., Bergmeir, C., & Webb, G. I. (2022). MultiRocket: multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery, 36(5), 1623-1646.
Original paper: https://link.springer.com/article/10.1007/s10618-022-00844-1
Original repository: https://github.com/ChangWeiTan/MultiRocket
Flatten
Flatten (*args, **kwargs)
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to
, etc.
.. note:: As per the example above, an __init__()
call to the parent class must be made before assignment on the child.
:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
= torch.rand(2, 3, 5, 4).to(default_device()) - .3
o print(o)
= _LPVV(o, dim=2)
output print(output) # Should print: torch.Size([2, 3, 4])
tensor([[[[ 0.5644, -0.0509, -0.0390, 0.4091],
[ 0.0517, -0.1471, 0.6458, 0.5593],
[ 0.4516, -0.0821, 0.1271, 0.0592],
[ 0.4151, 0.4376, 0.0763, 0.3780],
[ 0.2653, -0.1817, 0.0156, 0.4993]],
[[-0.0779, 0.0858, 0.1982, 0.3224],
[ 0.1130, 0.0714, -0.1779, 0.5360],
[-0.1848, -0.2270, -0.0925, -0.1217],
[ 0.2820, -0.0205, -0.2777, 0.3755],
[-0.2490, 0.2613, 0.4237, 0.4534]],
[[-0.0162, 0.6368, 0.0016, 0.1467],
[ 0.6035, -0.1365, 0.6930, 0.6943],
[ 0.2790, 0.3818, -0.0731, 0.0167],
[ 0.6442, 0.3443, 0.4829, -0.0944],
[ 0.2932, 0.6952, 0.5541, 0.5946]]],
[[[ 0.6757, 0.5740, 0.3071, 0.4400],
[-0.2344, -0.1056, 0.4773, 0.2432],
[ 0.2595, -0.1528, -0.0866, 0.6201],
[ 0.0657, 0.1220, 0.4849, 0.4254],
[ 0.3399, -0.1609, 0.3465, 0.2389]],
[[-0.0765, 0.0516, 0.0028, 0.4381],
[ 0.5212, -0.2781, -0.0896, -0.0301],
[ 0.6857, 0.3583, 0.5869, 0.3418],
[ 0.3002, 0.5135, 0.6011, 0.6499],
[-0.2807, -0.2888, 0.3965, 0.6585]],
[[-0.1368, 0.6677, 0.1439, 0.1434],
[-0.1820, 0.1041, -0.1211, 0.6103],
[ 0.5808, 0.4588, 0.4572, 0.3713],
[ 0.2389, -0.1392, 0.1371, -0.1570],
[ 0.2840, 0.1214, -0.0059, 0.5064]]]], device='mps:0')
tensor([[[ 1.0000, -0.6000, 0.6000, 1.0000],
[-0.6000, -0.2000, -0.6000, -0.2000],
[ 0.6000, 0.2000, -0.2000, 0.2000]],
[[ 0.2000, -0.6000, -0.2000, 1.0000],
[ 0.2000, -0.2000, 0.2000, 0.2000],
[ 0.2000, 0.2000, -0.2000, 0.2000]]], device='mps:0')
= _MPV(o, dim=2)
output print(output) # Should print: torch.Size([2, 3, 4])
tensor([[[0.3496, 0.4376, 0.2162, 0.3810],
[0.1975, 0.1395, 0.3109, 0.4218],
[0.4550, 0.5145, 0.4329, 0.3631]],
[[0.3352, 0.3480, 0.4040, 0.3935],
[0.5023, 0.3078, 0.3968, 0.5221],
[0.3679, 0.3380, 0.2460, 0.4079]]], device='mps:0')
= _RSPV(o, dim=2)
output print(output) # Should print: torch.Size([2, 3, 4])
tensor([[[ 1.0000, -0.0270, 0.9138, 1.0000],
[-0.1286, 0.2568, 0.0630, 0.8654],
[ 0.9823, 0.8756, 0.9190, 0.8779]],
[[ 0.7024, 0.2482, 0.8983, 1.0000],
[ 0.6168, 0.2392, 0.8931, 0.9715],
[ 0.5517, 0.8133, 0.7065, 0.8244]]], device='mps:0')
= _PPV(o, dim=2)
output print(output) # Should print: torch.Size([2, 3, 4])
tensor([[[-0.3007, -1.0097, -0.6697, -0.2381],
[-1.0466, -0.9316, -0.9705, -0.3738],
[-0.2786, -0.2314, -0.3366, -0.4569]],
[[-0.5574, -0.8893, -0.3883, -0.2130],
[-0.5401, -0.8574, -0.4009, -0.1767],
[-0.6861, -0.5149, -0.7555, -0.4102]]], device='mps:0')
MultiRocketFeaturesPlus
MultiRocketFeaturesPlus (c_in, seq_len, num_features=10000, max_dilations_per_kernel=32, kernel_size=9, max_num_channels=9, max_num_kernels=84, diff=False)
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to
, etc.
.. note:: As per the example above, an __init__()
call to the parent class must be made before assignment on the child.
:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
MultiRocketBackbonePlus
MultiRocketBackbonePlus (c_in, seq_len, num_features=50000, max_dilations_per_kernel=32, kernel_size=9, max_num_channels=None, max_num_kernels=84, use_diff=True)
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to
, etc.
.. note:: As per the example above, an __init__()
call to the parent class must be made before assignment on the child.
:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
MultiRocketPlus
MultiRocketPlus (c_in, c_out, seq_len, d=None, num_features=50000, max_dilations_per_kernel=32, kernel_size=9, max_num_channels=None, max_num_kernels=84, use_bn=True, fc_dropout=0, custom_head=None, zero_init=True, use_diff=True)
A sequential container.
Modules will be added to it in the order they are passed in the constructor. Alternatively, an OrderedDict
of modules can be passed in. The forward()
method of [
Sequential](https://timeseriesAI.github.io/models.layers.html#sequential)
accepts any input and forwards it to the first module it contains. It then “chains” outputs to inputs sequentially for each subsequent module, finally returning the output of the last module.
The value a [
Sequential](https://timeseriesAI.github.io/models.layers.html#sequential)
provides over manually calling a sequence of modules is that it allows treating the whole container as a single module, such that performing a transformation on the [
Sequential](https://timeseriesAI.github.io/models.layers.html#sequential)
applies to each of the modules it stores (which are each a registered submodule of the [
Sequential](https://timeseriesAI.github.io/models.layers.html#sequential)
).
What’s the difference between a [
Sequential](https://timeseriesAI.github.io/models.layers.html#sequential)
and a :class:torch.nn.ModuleList
? A ModuleList
is exactly what it sounds like–a list for storing Module
s! On the other hand, the layers in a [
Sequential](https://timeseriesAI.github.io/models.layers.html#sequential)
are connected in a cascading way.
Example::
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))
from tsai.imports import default_device
= torch.randn(16, 5, 20).to(default_device())
xb = torch.randint(0, 3, (16, 20)).to(default_device())
yb
= MultiRocketPlus(5, 3, 20, d=None, use_diff=True).to(default_device())
model = model(xb)
output assert output.shape == (16, 3)
output.shape
torch.Size([16, 3])
= torch.randn(16, 5, 20).to(default_device())
xb = torch.randint(0, 3, (16, 20)).to(default_device())
yb
= MultiRocketPlus(5, 3, 20, d=None, use_diff=False).to(default_device())
model = model(xb)
output assert output.shape == (16, 3)
output.shape
torch.Size([16, 3])
= torch.randn(16, 5, 20).to(default_device())
xb = torch.randint(0, 3, (16, 5, 20)).to(default_device())
yb
= MultiRocketPlus(5, 3, 20, d=20, use_diff=True).to(default_device())
model = model(xb)
output assert output.shape == (16, 20, 3)
output.shape
torch.Size([16, 20, 3])