Mixed data

DataLoader than can take data from multiple dataloaders with different types of data


source

MixedDataLoaders

 MixedDataLoaders (*loaders, path:str|Path='.', device=None)

Basic wrapper around several DataLoaders.


source

MixedDataLoader

 MixedDataLoader (*loaders, path='.', shuffle=False, device=None, bs=None)

Accepts any number of DataLoader and a device


source

get_mixed_dls

 get_mixed_dls (*dls, device=None, shuffle_train=None, shuffle_valid=None,
                **kwargs)
from tsai.data.tabular import *
path = untar_data(URLs.ADULT_SAMPLE)
df = pd.read_csv(path/'adult.csv')
# df['salary'] = np.random.rand(len(df)) # uncomment to simulate a cont dependent variable
target = 'salary'
splits = RandomSplitter()(range_of(df))

cat_names = ['workclass', 'education', 'marital-status']
cont_names = ['age', 'fnlwgt']
dls1 = get_tabular_dls(df, cat_names=cat_names, cont_names=cont_names, y_names=target, splits=splits, bs=512)
dls1.show_batch()

cat_names = None #['occupation', 'relationship', 'race']
cont_names = ['education-num']
dls2 = get_tabular_dls(df, cat_names=cat_names, cont_names=cont_names, y_names=target, splits=splits, bs=128)
dls2.show_batch()
workclass education marital-status age fnlwgt salary
0 Private Bachelors Married-civ-spouse 59.999999 131680.999115 >=50k
1 Private 12th Never-married 18.000000 311795.000052 <50k
2 Private HS-grad Married-civ-spouse 45.000000 350440.002257 >=50k
3 Local-gov Masters Never-married 44.000000 101593.001253 <50k
4 ? Some-college Never-married 20.999999 41355.995576 <50k
5 Private Bachelors Never-married 30.000000 207668.000292 <50k
6 Federal-gov Bachelors Never-married 28.000000 281859.998606 <50k
7 ? Some-college Never-married 20.999999 180338.999810 <50k
8 Private Some-college Never-married 20.000000 174713.999509 <50k
9 Self-emp-not-inc Bachelors Married-civ-spouse 50.000000 334273.005863 <50k
education-num_na education-num salary
0 False 9.0 <50k
1 False 9.0 <50k
2 False 13.0 >=50k
3 False 9.0 <50k
4 False 9.0 <50k
5 False 13.0 >=50k
6 False 10.0 <50k
7 False 10.0 <50k
8 False 13.0 <50k
9 False 10.0 <50k
dls = get_mixed_dls(dls1, dls2, bs=8)
first(dls.train)
first(dls.valid)
torch.save(dls,'export/mixed_dls.pth')
del dls
dls = torch.load('export/mixed_dls.pth')
dls.train.show_batch()
workclass education marital-status age fnlwgt salary
0 State-gov HS-grad Never-married 43.000000 23156.998049 <50k
1 Private 11th Married-civ-spouse 32.000000 140092.001434 <50k
2 Self-emp-not-inc HS-grad Never-married 43.000000 48086.995399 <50k
3 Self-emp-not-inc Assoc-acdm Never-married 34.000000 177638.999728 <50k
4 Local-gov Masters Married-civ-spouse 65.000001 146453.999176 <50k
5 Private HS-grad Married-civ-spouse 33.000000 227281.999333 <50k
6 Private HS-grad Never-married 33.000000 194900.999911 <50k
7 Private HS-grad Divorced 23.000000 259301.002460 <50k
education-num_na education-num salary
0 False 9.0 <50k
1 False 7.0 <50k
2 False 9.0 <50k
3 False 12.0 <50k
4 False 14.0 <50k
5 True 10.0 <50k
6 False 9.0 <50k
7 False 9.0 <50k
xb, yb = first(dls.train)
xb
((tensor([[ 8, 12,  5],
          [ 5,  2,  3],
          [ 7, 12,  5],
          [ 7,  8,  5],
          [ 3, 13,  3],
          [ 5, 12,  3],
          [ 5, 12,  5],
          [ 5, 12,  1]]),
  tensor([[ 0.3222, -1.5782],
          [-0.4850, -0.4696],
          [ 0.3222, -1.3418],
          [-0.3383, -0.1136],
          [ 1.9368, -0.4093],
          [-0.4117,  0.3570],
          [-0.4117,  0.0500],
          [-1.1455,  0.6606]])),
 (tensor([[1],
          [1],
          [1],
          [1],
          [1],
          [2],
          [1],
          [1]]),
  tensor([[-0.4258],
          [-1.2097],
          [-0.4258],
          [ 0.7502],
          [ 1.5342],
          [-0.0338],
          [-0.4258],
          [-0.4258]])))
xs, ys = first(dls.train)
xs[0][0].shape, xs[0][1].shape, xs[1][0].shape, xs[1][1].shape
(torch.Size([8, 3]),
 torch.Size([8, 2]),
 torch.Size([8, 1]),
 torch.Size([8, 1]))
from tsai.data.validation import TimeSplitter
from tsai.data.core import TSRegression, get_ts_dls
X = np.repeat(np.repeat(np.arange(8)[:, None, None], 2, 1), 5, 2).astype(float)
X = np.concatenate([X, X])
y = np.concatenate([np.arange(len(X)//2)]*2)
alphabet = np.array(list(string.ascii_lowercase))
# y = alphabet[y]
splits = TimeSplitter(.5, show_plot=False)(range_of(X))
tfms = [None, TSRegression()]
dls1 = get_ts_dls(X, y, splits=splits, tfms=tfms)
dls1.one_batch()
(TSTensor(samples:8, vars:2, len:5, device=cpu, dtype=torch.float32),
 tensor([7., 0., 2., 1., 5., 4., 3., 6.]))
data = np.concatenate([np.repeat(np.arange(8)[:, None], 3, 1)*np.array([1, 10, 100])]*2)
df = pd.DataFrame(data, columns=['cat1', 'cat2', 'cont'])
df['cont'] = df['cont'].astype(float)
df['target'] = y
cat_names = ['cat1', 'cat2']
cont_names = ['cont']
target = 'target'
dls2 = get_tabular_dls(df, procs=[Categorify, FillMissing, #Normalize
                                 ], cat_names=cat_names, cont_names=cont_names, y_names=target, splits=splits, bs=8)
dls2.one_batch()
(tensor([[2, 2],
         [5, 5],
         [1, 1],
         [7, 7],
         [3, 3],
         [6, 6],
         [8, 8],
         [4, 4]]),
 tensor([[100.],
         [400.],
         [  0.],
         [600.],
         [200.],
         [500.],
         [700.],
         [300.]]),
 tensor([[1],
         [4],
         [0],
         [6],
         [2],
         [5],
         [7],
         [3]], dtype=torch.int8))
z = zip(_loaders[dls1.train.fake_l.num_workers == 0](dls1.train.fake_l))
for b in z: 
    print(b)
    break
((TSTensor(samples:8, vars:2, len:5, device=cpu, dtype=torch.float32), tensor([7., 0., 2., 1., 5., 4., 3., 6.])),)
bs = 8
dls = get_mixed_dls(dls1, dls2, bs=bs)
dl = dls.train
xb, yb = dl.one_batch()
test_eq(len(xb), 2)
test_eq(len(xb[0]), bs)
test_eq(len(xb[1]), 2)
test_eq(len(xb[1][0]), bs)
test_eq(len(xb[1][1]), bs)
test_eq(xb[0].data[:, 0, 0].long(), xb[1][0][:, 0] - 1) # categorical data and ts are in synch
test_eq(xb[0].data[:, 0, 0], (xb[1][1]/100).flatten()) # continuous data and ts are in synch
test_eq(tensor(dl.input_idxs), yb.long().cpu())
dl = dls.valid
xb, yb = dl.one_batch()
test_eq(tensor(y[dl.input_idxs]), yb.long().cpu())