from tsai.data.all import *
from tsai.models.all import *
from tsai.tslearner import *
Noisy student
Callback to apply noisy student self-training (a semi-supervised learning approach) based on:
Xie, Q., Luong, M. T., Hovy, E., & Le, Q. V. (2020). Self-training with noisy student improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10687-10698).
NoisyStudent
NoisyStudent (dl2:fastai.data.load.DataLoader, bs:Optional[int]=None, l2pl_ratio:int=1, batch_tfms:Optional[list]=None, do_setup:bool=True, pseudolabel_sample_weight:float=1.0, verbose=False)
*A callback to implement the Noisy Student approach. In the original paper this was used in combination with noise: - stochastic depth: .8 - RandAugment: N=2, M=27 - dropout: .5
Steps: 1. Build the dl you will use as a teacher 2. Create dl2 with the pseudolabels (either soft or hard preds) 3. Pass any required batch_tfms to the callback*
= 'NATOPS'
dsid = get_UCR_data(dsid, return_split=False)
X, y, splits = X.astype(np.float32) X
= X
pseudolabeled_data = True
soft_preds
= ToNumpyCategory()(y) if soft_preds else OneHot()(y)
pseudolabels = TSDatasets(pseudolabeled_data, pseudolabels)
dsets2 = TSDataLoader(dsets2, num_workers=0)
dl2 = NoisyStudent(dl2, bs=256, l2pl_ratio=2, verbose=True)
noisy_student_cb = [None, TSClassification]
tfms = TSClassifier(X, y, splits=splits, tfms=tfms, batch_tfms=[TSStandardize(), TSRandomSize(.5)], cbs=noisy_student_cb)
learn 1) learn.fit_one_cycle(
labels / pseudolabels per training batch : 171 / 85
relative labeled/ pseudolabel sample weight in dataset: 4.0
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.782144 | 1.758471 | 0.250000 | 00:00 |
X: torch.Size([171, 24, 51]) X2: torch.Size([85, 24, 51]) X_comb: torch.Size([256, 24, 41])
y: torch.Size([171]) y2: torch.Size([85]) y_comb: torch.Size([256])
= X
pseudolabeled_data = False
soft_preds
= ToNumpyCategory()(y) if soft_preds else OneHot()(y)
pseudolabels = pseudolabels.astype(np.float32)
pseudolabels = TSDatasets(pseudolabeled_data, pseudolabels)
dsets2 = TSDataLoader(dsets2, num_workers=0)
dl2 = NoisyStudent(dl2, bs=256, l2pl_ratio=2, verbose=True)
noisy_student_cb = [None, TSClassification]
tfms = TSClassifier(X, y, splits=splits, tfms=tfms, batch_tfms=[TSStandardize(), TSRandomSize(.5)], cbs=noisy_student_cb)
learn 1) learn.fit_one_cycle(
labels / pseudolabels per training batch : 171 / 85
relative labeled/ pseudolabel sample weight in dataset: 4.0
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 1.898401 | 1.841182 | 0.155556 | 00:00 |
X: torch.Size([171, 24, 51]) X2: torch.Size([85, 24, 51]) X_comb: torch.Size([256, 24, 51])
y: torch.Size([171, 6]) y2: torch.Size([85, 6]) y_comb: torch.Size([256, 6])