TSSequencerPlus

This is a PyTorch implementation created by Ignacio Oguiza (oguiza@timeseriesAI.co) based on Sequencer: Deep LSTM for Image Classification


source

TSSequencerPlus

 TSSequencerPlus (c_in:int, c_out:int, seq_len:int, d_model:int=128,
                  depth:int=6, act:str='gelu', lstm_dropout:float=0.0,
                  dropout:float=0.0, drop_path_rate:float=0.0,
                  mlp_ratio:int=1, lstm_bias:bool=True,
                  pre_norm:bool=False, use_token:bool=False,
                  use_pe:bool=True, cat_pos:Optional[list]=None,
                  n_cat_embeds:Optional[list]=None,
                  cat_embed_dims:Optional[list]=None,
                  cat_padding_idxs:Optional[list]=None,
                  token_size:int=None, tokenizer:Optional[Callable]=None,
                  feature_extractor:Optional[Callable]=None,
                  flatten:bool=False, concat_pool:bool=True,
                  fc_dropout:float=0.0, use_bn:bool=False,
                  bias_init:Union[float,list,NoneType]=None,
                  y_range:Optional[tuple]=None,
                  custom_head:Optional[Callable]=None, verbose:bool=True,
                  **kwargs)

*Time Series Sequencer model based on:

Tatsunami, Y., & Taki, M. (2022). Sequencer: Deep LSTM for Image Classification. arXiv preprint arXiv:2205.01972. Official implementation: https://github.com/okojoalg/sequencer

Args: c_in: the number of features (aka variables, dimensions, channels) in the time series dataset. c_out: the number of target classes. seq_len: number of time steps in the time series. d_model: total dimension of the model (number of features created by the model). depth: number of blocks in the encoder. act: the activation function of positionwise feedforward layer. lstm_dropout: dropout rate applied to the lstm sublayer. dropout: dropout applied to to the embedded sequence steps after position embeddings have been added and to the mlp sublayer in the encoder. drop_path_rate: stochastic depth rate. mlp_ratio: ratio of mlp hidden dim to embedding dim. lstm_bias: determines whether bias is applied to the LSTM layer. pre_norm: if True normalization will be applied as the first step in the sublayers. Defaults to False. use_token: if True, the output will come from the transformed token. This is meant to be use in classification tasks. use_pe: flag to indicate if positional embedding is used. n_cat_embeds: list with the sizes of the dictionaries of embeddings (int). cat_embed_dims: list with the sizes of each embedding vector (int). cat_padding_idxs: If specified, the entries at cat_padding_idxs do not contribute to the gradient; therefore, the embedding vector at cat_padding_idxs are not updated during training. Use 0 for those categorical embeddings that may have #na# values. Otherwise, leave them as None. You can enter a combination for different embeddings (for example, [0, None, None]). cat_pos: list with the position of the categorical variables in the input. token_size: Size of the embedding function used to reduce the sequence length (similar to ViT’s patch size) tokenizer: nn.Module or callable that will be used to reduce the sequence length feature_extractor: nn.Module or callable that will be used to preprocess the time series before the embedding step. It is useful to extract features or resample the time series. flatten: flag to indicate if the 3d logits will be flattened to 2d in the model’s head if use_token is set to False. If use_token is False and flatten is False, the model will apply a pooling layer. concat_pool: if True the head begins with fastai’s AdaptiveConcatPool2d if concat_pool=True; otherwise, it uses traditional average pooling. fc_dropout: dropout applied to the final fully connected layer. use_bn: flag that indicates if batchnorm will be applied to the head. bias_init: values used to initialized the output layer. y_range: range of possible y values (used in regression tasks). custom_head: custom head that will be applied to the network. It must contain all kwargs (pass a partial function) verbose: flag to control verbosity of the model.

Input: x: bs (batch size) x nvars (aka features, variables, dimensions, channels) x seq_len (aka time steps)*

Exported source
class TSSequencerPlus(nn.Sequential):
    r"""Time Series Sequencer model based on:

    Tatsunami, Y., & Taki, M. (2022). Sequencer: Deep LSTM for Image Classification. arXiv preprint arXiv:2205.01972.
    Official implementation: https://github.com/okojoalg/sequencer

    Args:
        c_in:               the number of features (aka variables, dimensions, channels) in the time series dataset.
        c_out:              the number of target classes.
        seq_len:            number of time steps in the time series.
        d_model:            total dimension of the model (number of features created by the model).
        depth:              number of blocks in the encoder.
        act:                the activation function of positionwise feedforward layer.
        lstm_dropout:       dropout rate applied to the lstm sublayer.
        dropout:            dropout applied to to the embedded sequence steps after position embeddings have been added and
                            to the mlp sublayer in the encoder.
        drop_path_rate:     stochastic depth rate.
        mlp_ratio:          ratio of mlp hidden dim to embedding dim.
        lstm_bias:          determines whether bias is applied to the LSTM layer.
        pre_norm:           if True normalization will be applied as the first step in the sublayers. Defaults to False.
        use_token:          if True, the output will come from the transformed token. This is meant to be use in classification tasks.
        use_pe:             flag to indicate if positional embedding is used.
        n_cat_embeds:       list with the sizes of the dictionaries of embeddings (int).
        cat_embed_dims:     list with the sizes of each embedding vector (int).
        cat_padding_idxs:       If specified, the entries at cat_padding_idxs do not contribute to the gradient; therefore, the embedding vector at cat_padding_idxs
                            are not updated during training. Use 0 for those categorical embeddings that may have #na# values. Otherwise, leave them as None.
                            You can enter a combination for different embeddings (for example, [0, None, None]).
        cat_pos:            list with the position of the categorical variables in the input.
        token_size:         Size of the embedding function used to reduce the sequence length (similar to ViT's patch size)
        tokenizer:          nn.Module or callable that will be used to reduce the sequence length
        feature_extractor:  nn.Module or callable that will be used to preprocess the time series before
                            the embedding step. It is useful to extract features or resample the time series.
        flatten:            flag to indicate if the 3d logits will be flattened to 2d in the model's head if use_token is set to False.
                            If use_token is False and flatten is False, the model will apply a pooling layer.
        concat_pool:        if True the head begins with fastai's AdaptiveConcatPool2d if concat_pool=True; otherwise, it uses traditional average pooling.
        fc_dropout:         dropout applied to the final fully connected layer.
        use_bn:             flag that indicates if batchnorm will be applied to the head.
        bias_init:          values used to initialized the output layer.
        y_range:            range of possible y values (used in regression tasks).
        custom_head:        custom head that will be applied to the network. It must contain all kwargs (pass a partial function)
        verbose:            flag to control verbosity of the model.

    Input:
        x: bs (batch size) x nvars (aka features, variables, dimensions, channels) x seq_len (aka time steps)
    """

    def __init__(self, c_in:int, c_out:int, seq_len:int, d_model:int=128, depth:int=6, act:str='gelu',
                 lstm_dropout:float=0., dropout:float=0., drop_path_rate:float=0., mlp_ratio:int=1, lstm_bias:bool=True,
                 pre_norm:bool=False, use_token:bool=False, use_pe:bool=True,
                 cat_pos:Optional[list]=None, n_cat_embeds:Optional[list]=None, cat_embed_dims:Optional[list]=None, cat_padding_idxs:Optional[list]=None,
                 token_size:int=None, tokenizer:Optional[Callable]=None, feature_extractor:Optional[Callable]=None,
                 flatten:bool=False, concat_pool:bool=True, fc_dropout:float=0., use_bn:bool=False,
                 bias_init:Optional[Union[float, list]]=None, y_range:Optional[tuple]=None, custom_head:Optional[Callable]=None, verbose:bool=True,
                 **kwargs):

        if use_token and c_out == 1:
            use_token = False
            pv("use_token set to False as c_out == 1", verbose)
        backbone = _TSSequencerBackbone(c_in, seq_len, depth=depth, d_model=d_model, act=act,
                                      lstm_dropout=lstm_dropout, dropout=dropout, drop_path_rate=drop_path_rate,
                                      pre_norm=pre_norm, mlp_ratio=mlp_ratio, use_pe=use_pe, use_token=use_token,
                                      n_cat_embeds=n_cat_embeds, cat_embed_dims=cat_embed_dims, cat_padding_idxs=cat_padding_idxs, cat_pos=cat_pos,
                                      feature_extractor=feature_extractor, token_size=token_size, tokenizer=tokenizer)

        self.head_nf = d_model
        self.c_out = c_out
        self.seq_len = seq_len

        # Head
        if custom_head:
            if isinstance(custom_head, nn.Module): head = custom_head
            else: head = custom_head(self.head_nf, c_out, seq_len, **kwargs)
        else:
            nf = d_model
            layers = []
            if use_token:
                layers += [TokenLayer()]
            elif flatten:
                layers += [Reshape(-1)]
                nf = nf * seq_len
            else:
                if concat_pool: nf *= 2
                layers = [GACP1d(1) if concat_pool else GAP1d(1)]
            if use_bn: layers += [nn.BatchNorm1d(nf)]
            if fc_dropout: layers += [nn.Dropout(fc_dropout)]

            # Last layer
            linear = nn.Linear(nf, c_out)
            if bias_init is not None:
                if isinstance(bias_init, float): nn.init.constant_(linear.bias, bias_init)
                else: linear.bias = nn.Parameter(torch.as_tensor(bias_init, dtype=torch.float32))
            layers += [linear]

            if y_range: layers += [SigmoidRange(*y_range)]
            head = nn.Sequential(*layers)
        super().__init__(OrderedDict([('backbone', backbone), ('head', head)]))


TSSequencer = TSSequencerPlus
bs = 16
nvars = 4
seq_len = 50
c_out = 2
xb = torch.rand(bs, nvars, seq_len)
model = TSSequencerPlus(nvars, c_out, seq_len)
bs = 16
nvars = 4
seq_len = 50
c_out = 2
xb = torch.rand(bs, nvars, seq_len)
model = TSSequencerPlus(nvars, c_out, seq_len, lstm_dropout=.1, dropout=.1, use_token=True)
test_eq(model(xb).shape, (bs, c_out))
model = TSSequencerPlus(nvars, c_out, seq_len, lstm_dropout=.1, dropout=.1, use_token=False)
test_eq(model(xb).shape, (bs, c_out))
bs = 16
nvars = 4
seq_len = 50
c_out = 2
xb = torch.rand(bs, nvars, seq_len)
bias_init = np.array([0.8, .2])
model = TSSequencerPlus(nvars, c_out, seq_len, bias_init=bias_init)
test_eq(model(xb).shape, (bs, c_out))
test_eq(model.head[1].bias.data, tensor(bias_init))
bs = 16
nvars = 4
seq_len = 50
c_out = 1
xb = torch.rand(bs, nvars, seq_len)
bias_init = 8.5
model = TSSequencerPlus(nvars, c_out, seq_len, bias_init=bias_init)
test_eq(model(xb).shape, (bs, c_out))
test_eq(model.head[1].bias.data, tensor([bias_init]))
bs = 16
nvars = 4
seq_len = 50
c_out = 2
xb = torch.rand(bs, nvars, seq_len)
bias_init = np.array([0.8, .2])
model = TSSequencerPlus(nvars, c_out, seq_len, bias_init=bias_init)
test_eq(model(xb).shape, (bs, c_out))
test_eq(model.head[1].bias.data, tensor(bias_init))

Feature extractor

It’s a known fact that transformers cannot be directly applied to long sequences. To avoid this, we have included a way to subsample the sequence to generate a more manageable input.

from tsai.data.validation import get_splits
from tsai.data.core import get_ts_dls
X = np.zeros((10, 3, 5000))
y = np.random.randint(0,2,X.shape[0])
splits = get_splits(y)
dls = get_ts_dls(X, y, splits=splits)
xb, yb = dls.train.one_batch()
xb

TSTensor(samples:8, vars:3, len:5000, device=mps:0, dtype=torch.float32)

If you try to use SequencerPlus, it’s likely you’ll get an ‘out-of-memory’ error.

To avoid this you can subsample the sequence reducing the input’s length. This can be done in multiple ways. Here are a few examples:

# Separable convolution (to avoid mixing channels)
feature_extractor = Conv1d(xb.shape[1], xb.shape[1], ks=100, stride=50, padding=0, groups=xb.shape[1]).to(default_device())
feature_extractor.to(xb.device)(xb).shape
torch.Size([8, 3, 99])
# Convolution (if you want to mix channels or change number of channels)
feature_extractor=MultiConv1d(xb.shape[1], 64, kss=[1,3,5,7,9], keep_original=True).to(default_device())
test_eq(feature_extractor.to(xb.device)(xb).shape, (xb.shape[0], 64, xb.shape[-1]))
# MaxPool
feature_extractor = nn.Sequential(Pad1d((0, 50), 0), nn.MaxPool1d(kernel_size=100, stride=50)).to(default_device())
feature_extractor.to(xb.device)(xb).shape
torch.Size([8, 3, 100])
# AvgPool
feature_extractor = nn.Sequential(Pad1d((0, 50), 0), nn.AvgPool1d(kernel_size=100, stride=50)).to(default_device())
feature_extractor.to(xb.device)(xb).shape
torch.Size([8, 3, 100])

Once you decide what type of transform you want to apply, you just need to pass the layer as the feature_extractor attribute:

bs = 16
nvars = 4
seq_len = 1000
c_out = 2
d_model = 128

xb = torch.rand(bs, nvars, seq_len)
feature_extractor = partial(Conv1d, ks=5, stride=3, padding=0, groups=xb.shape[1])
model = TSSequencerPlus(nvars, c_out, seq_len, d_model=d_model, feature_extractor=feature_extractor)
test_eq(model.to(xb.device)(xb).shape, (bs, c_out))

Categorical variables

from tsai.utils import alphabet, ALPHABET
a = alphabet[np.random.randint(0,3,40)]
b = ALPHABET[np.random.randint(6,10,40)]
c = np.random.rand(40).reshape(4,1,10)
map_a = {k:v for v,k in enumerate(np.unique(a))}
map_b = {k:v for v,k in enumerate(np.unique(b))}
n_cat_embeds = [len(m.keys()) for m in [map_a, map_b]]
szs = [emb_sz_rule(n) for n in n_cat_embeds]
a = np.asarray(a.map(map_a)).reshape(4,1,10)
b = np.asarray(b.map(map_b)).reshape(4,1,10)
inp = torch.from_numpy(np.concatenate((c,a,b), 1)).float()
feature_extractor = partial(Conv1d, ks=3, padding='same')
model = TSSequencerPlus(3, 2, 10, d_model=64, cat_pos=[1,2], feature_extractor=feature_extractor)
test_eq(model(inp).shape, (4,2))

Sequence Embedding

Sometimes you have a samples with a very long sequence length. In those cases you may want to reduce it’s length before passing it to the transformer. To do that you may just pass a token_size like in this example:

t = torch.rand(8, 2, 10080)
SeqTokenizer(2, 128, 60)(t).shape
torch.Size([8, 128, 168])
t = torch.rand(8, 2, 10080)
model = TSSequencerPlus(2, 5, 10080, d_model=64, token_size=60)
model(t).shape
torch.Size([8, 5])